Vocabulary and Symbols

Describe the following geometry words in your own words. Draw the symbol if there is one associated with it.

Triangle:

Right Triangle:

Legs of a Triangle:

Hypotenuse of a Triangle:

Angle:

Square Root:

Pythagorean Theorem

On the lines below, record the vocabulary terms for each side. Then, using a, b, and c, label each side of the triangle in the boxes below.

REFLECT:
What is the relationship among a^{2}, b^{2}, and c^{2} ?

CREATE:

Using a^{2}, b^{2}, and c^{2}, write an equation to describe the mathematical relationship for Pythagorean theorem.

Am I Right?

Determine whether each of the following problems below are right triangles using the Pythagorean rule.

1. Do these three sides construct a right triangle?
$a=6 \mathrm{ft}$
$b=8 \mathrm{ft}$
$a^{2}=$ \qquad
$c=10 \mathrm{ft}$
$c^{2}=$ \qquad
2. Do these three lengths form a right triangle?

$$
\begin{array}{ll}
a=7 \mathrm{~cm} & a^{2}= \\
b=8 \mathrm{~cm} & b^{2}= \\
c=12 \mathrm{~cm} & c^{2}=
\end{array}
$$

3. Do these three sides create a right triangle?
$a=5$ in
$b=12$ in
$a^{2}=$ \qquad
$c=13$ in
$c^{2}=$ \qquad
4. Do these three lengths make a right triangle?
$a=9 \mathrm{~m}$
$b=12 \mathrm{~m}$
$c=15 \mathrm{~m}$
$a^{2}=$ \qquad
$c^{2}=$ \qquad

WRITE, PAIR, SHARE:
What does it mean when $a^{2}+b^{2} \neq c^{2}$?

TURN \& TALK:
What relationships do you notice between the side lengths of the Cheez-Its ${ }^{\circledR}$ triangle and questions 1 and 4?

What's My Hypotenuse?

Use a calculator and the formula to find the length of each missing hypotenuse.
5. $c^{2}=$ \qquad

$$
b=35 \mathrm{~m}
$$

Set up the equation: $a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
& \text { If } a=12 \mathrm{~m}, a^{2}= \\
& \text { If } b=35 \mathrm{~m}, b^{2}= \\
& \text { Now, } a^{2}+b^{2}= \\
& \text { So, } c^{2}=
\end{aligned}
$$

\qquad
\qquad
\qquad

If we know the value of c^{2}, we can use the
square root to find c.
$\sqrt{c^{2}}=$ \qquad and this is the value of c.

WRITE, PAIR, SHARE:
Can the hypotenuse or a leg be a decimal? Why or why not?
6. Using the measurements of the right triangle below, determine the following:
$a^{2}=$ \qquad

$b^{2}=$ \qquad
$c^{2}=$ \qquad
$c=$ \qquad

What's My Leg Length?

WRITE, PAIR, SHARE:

Using what you know about solving equations and the right triangle below, how would you find the missing leg of a right triangle?
Record your hypothesis in the box:

Check your understanding by solving for the missing leg of the same right triangle above.
7. Solve for the missing leg.

Set up the equation: $a^{2}+b^{2}=c^{2}$
$b^{2}=$ \qquad _
$c^{2}=$ \qquad
Now, substitute the known values,
$a^{2}+$ \qquad $=$ \qquad
Solve for a by isolating the variable, a^{2}.
Then find the square root of a^{2} and this is the value of a.
8. Solve for the missing
leg of the right triangle:
$b=$ \qquad $a=10 \mathrm{~cm}$

