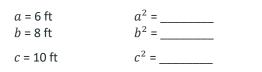

On the line side. Then in the boxe
REFLECT: What is the
CREATE: Using a^2, b mathemati

Name:

Pythagorean Theorem

On the lines below, record the vocabulary terms for each side. Then, using a, b, and c, label each side of the triangle in the boxes below.

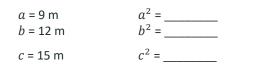

REFLECT: What is the relationship among a^2 , b^2 , and c^2 ?

Using a^2 , b^2 , and c^2 , write an equation to describe the mathematical relationship for Pythagorean theorem.

Am I Right?

Determine whether each of the following problems below are right triangles using the Pythagorean rule.

1. Do these three sides construct a right triangle?

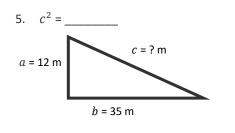

2. Do these three lengths form a right triangle?

<i>a</i> = 7 cm	$a^2 = _$
<i>b</i> = 8 cm	$b^2 = _$
<i>c</i> = 12 cm	<i>c</i> ² =

3. Do these three sides create a right triangle?

<i>a</i> = 5 in	$a^2 = $
<i>b</i> = 12 in	b ² =
<i>c</i> = 13 in	<i>c</i> ² =

4. Do these three lengths make a right triangle?


WRITE, PAIR, SHARE: What does it mean when $a^2 + b^2 \neq c^2$?

TURN & TALK:

What relationships do you notice between the side lengths of the Cheez-Its[®] triangle and questions 1 and 4?

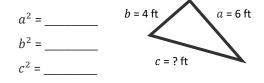
What's My Hypotenuse?

Use a calculator and the formula to find the length of each missing hypotenuse.

Set up the equation: $a^2 + b^2 = c^2$

Now,
$$a^2 + b^2 =$$

If we know the value of c^2 , we can use the square root to find c.

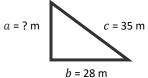

 $\sqrt{c^2}$ = _____ and this is the value of c.

WRITE, PAIR, SHARE:

C =

Can the hypotenuse or a leg be a decimal? Why or why not?

6. Using the measurements of the right triangle below, determine the following:



What's My Leg Length?

WRITE, PAIR, SHARE:

Using what you know about solving equations and the right triangle below, how would you find the missing leg of a right triangle? Record your hypothesis in the box:

Check your understanding by solving for the missing leg of the same right triangle above.

7. Solve for the missing leg.

Set up the equation: $a^2 + b^2 = c^2$

b² = _____

c² = _____

Now, substitute the known values,

*a*² + _____ = ____

Solve for a by isolating the variable, a^2 .

Then find the square root of a^2 and this is the value of a.

8. Solve for the missing leg of the right triangle: $b = _$ a = 10 cm b = ? cm

PYTHAGOR-EATIN' THEOREM

K20