TOYS VS. US

Your group's toy: \qquad

Part					
Measured	Toy Measurement (cm)	Group Member 1 Measurement (cm)	Group Member 2 Measurement (cm)	Group Member 3 Measurement (cm)	Average of Member

How can you figure out if the toy has the same proportions as the people in your group? Write your plan here:

Compare the toy with one of your group members. Use this space to show your math:

Is your toy proportional to the members of your group? Support your claim with data:

YOUR TOY SELF—HOW BIG SHOULD I BE?

Body Part Measured	Toy's Original Measurement	My Original Measurement	My Toy's Measurement Based on My Proportions

Now, create a model of what your toy should look like. Your model should:

- be based on your calculations (the last column in the above table).
- show your calculated measurements labeled on the model.
- include a model that isn't perfect, but reflects effort.

Below, write a paragraph explaining what it means for two things to be proportional. Explain how you determine whether two things are proportional. Give at least three reasons why a toy maker or an animator would need to understand the mathematics behind proportions, or how they would use them (or skew them) in their work.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

