VISUALIZE CUMULATIVE DATA

Help students visualize how cumulative data narrows the margin of error and changes the p-value—potentially crossing the significance threshold.

Key Columns:

- Cumulative Proportion (\hat{p}) = Cumulative Orange / Cumulative Total
- p-value from 1-proportion Z-test (explained below)
- Margin of Error (ME) for 1-prop CI:

$$ME = z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

(Use $z^* = 1.645$ for 90%, 1.96 for 95%)

- Confidence Interval =
 - o Lower Bound: = Cumulative Proportion ME
 - o Upper Bound: = Cumulative Proportion + ME

Create Two Graphs:

Excel	Ti-Calculator
1. Graph 1: Cumulative Sample Proportion vs. Target (0.20)	1. Graph 1: Cumulative Sum vs. Cumulative Proportion
o X-axis: Total M&Ms (or Bag #)	o X-axis: Total M&Ms (or Bag #)
o Y-axis: Cumulative Proportion	o Y-axis: Cumulative Proportion
o Add a horizontal line at 0.20 (claimed value)	o Add a horizontal line at 0.20 (claimed value)
 Add confidence bands if desired (CI bounds) 	 Add confidence bands if desired (CI bounds)
2. Graph 2: p-value vs. Total Sample Size	2. Graph 2: ME vs. n functions

MATH, MODELS, AND M&Ms

o X-axis: Cumulative Total	o X-axis: ME
	o Y-axis : n function
o Add a horizontal line at	o Add a horizontal line at
$\alpha = 0.05$ or $\alpha = 0.10$ (depending on your z^*)	$\alpha = 0.05$ or $\alpha = 0.10$ (depending on your z)

As students keep adding data and updating the spreadsheet:

• Watch the p-value column. The moment the p-value drops below α , point out:

"We now have enough evidence to reject the null hypothesis."

• In the graph, you'll see the p-value line dip below 0.05, and the sample proportion diverge significantly enough from 0.20.

Also, look at the confidence interval bounds:

• If 0.20 is no longer inside the interval, it means the observed proportion is statistically different from the claimed 20%.

