GUIDED NOTES (MODEL NOTES)

Standard Notation to Scientific Notation

Step 1) Find the first <u>nonzero</u> digit and place the decimal after it.

Step 2) Count how many places the decimal moves to get back to the <u>original number</u>.

Step 3) Write the number as: $\boxed{\textit{Decimal Number}} \times 10^{\boxed{\textit{exponent}}}$

Step 4) Determine the exponent:

- If the number is <u>greater</u> than 1, the exponent is <u>positive</u>.
- If the number is <u>less</u> than 1, the exponent is <u>negative</u>.

Significant Figures

• "sig figs" – digits in the number that carry meaning

Examples

Write the following numbers in scientific notation with two significant figures.

- (a) 47,000
 - 4.7×10^{4}
- (c) 0.0059
 - 5.9×10^{-3}

- **(b)** 3,500,000
 - 3.5×10^{6}
- (d) 0.000082
 - 8.2×10^{-5}

Scientific Notation to Standard Notation

Step 1) Look at the <u>exponent</u> of the 10.

Step 2) Move the decimal in the number:

- To the <u>right</u> if the exponent is positive.
- To the <u>left</u> if the exponent is negative.

Step 3) Add <u>zeros</u> if needed to fill in missing places.

Examples

Write the following numbers in standard notation with two significant figures.

(a)
$$9.4 \times 10^{-3}$$

0.0094

(b)
$$3.7 \times 10^{-5}$$

0.000037

(c)
$$2.6 \times 10^7$$

26,000,000

(d)
$$1.5 \times 10^4$$

15,000

Comparing Numbers in Scientific Notation

- Look at the <u>exponents</u> first.
 - o The number with the <u>larger</u> exponent is the greater number.

ex.)
$$3.1 \times 10^5$$
 > 8.7×10^6

ex.)
$$3.1 \times 10^5$$
 $> 8.7 \times 10^3$ ex.) 9.2×10^{-2} $> 2.4 \times 10^{-6}$

If the <u>exponents</u> are the same, compare the <u>decimal values</u>.

The number with the <u>larger</u> decimal is the greater number.

ex.)
$$2.4 \times 10^5$$
 < 5.1×10^5

ex.)
$$2.4 \times 10^5$$
 < 5.1×10^5 ex.) 8.0×10^{-6} > 1.3×10^{-6}

Watch out for negative exponents!