## **SCIENTIFIC NOTATION: GUIDED NOTES**

| Standard Notati     | on to Scientific Notation   |                                        |
|---------------------|-----------------------------|----------------------------------------|
| Step 1) Find the    | first digit and             | d place the decimal after it.          |
| Step 2) Count ho    | w many places the decim     | al moves to get back to the            |
| Step 3) Write the   | e number as:                |                                        |
| Step 4) Determin    | ne the exponent:            |                                        |
| • If the nur        | nber is than                | 1, the exponent is                     |
| • If the nur        | mber is than                | 1, the exponent is                     |
|                     |                             |                                        |
| Significant Figures |                             |                                        |
|                     |                             |                                        |
|                     |                             |                                        |
|                     |                             |                                        |
|                     |                             |                                        |
|                     |                             |                                        |
| Examples            |                             |                                        |
| Write the follow    | ing numbers in scientific r | notation with two significant figures. |
| (a) 47,000          |                             | <b>(b)</b> 3,500,000                   |
| (c) 0.0059          |                             | (d) 0.000082                           |

## **Scientific Notation to Standard Notation**

**Step 1)** Look at the \_\_\_\_\_ of the 10.

**Step 2)** Move the decimal in the number:

- To the \_\_\_\_\_ if the exponent is positive.
- To the \_\_\_\_\_ if the exponent is negative.

**Step 3)** Add if needed to fill in missing places.

## **Examples**

Write the following numbers in standard notation with two significant figures.

(a) 
$$9.4 \times 10^{-3}$$

**(b)** 
$$3.7 \times 10^{-5}$$

(c) 
$$2.6 \times 10^7$$

(d) 
$$1.5 \times 10^4$$

## **Comparing Numbers in Scientific Notation**

- Look at the \_\_\_\_\_ first.
  - o The number with the \_\_\_\_\_ exponent is the greater number.

ex.) 
$$3.1 \times 10^5$$
 8.7 ×  $10^3$ 

ex.) 
$$3.1 \times 10^5$$
  $8.7 \times 10^3$  ex.)  $9.2 \times 10^{-2}$   $2.4 \times 10^{-6}$ 

o If the \_\_\_\_\_ are the same, compare the \_\_\_\_\_.

The number with the \_\_\_\_\_ decimal is the greater number.

ex.) 
$$2.4 \times 10^5$$
 5.1 ×  $10^5$ 

Watch out for negative exponents!