MISSION ANALYSIS | То: | Mission Director | |----------|---| | From: | , Planetary Science Analyst Name | | Subject: | Mission Planning for Planet/Moon | | Purpose: | As a planetary scientist at NASA, our team will multiply and divide large numbers using scientific notation to calculate vital information—such as travel distance, diameter comparisons, and weight—for our mission. | ### **Travel Distance** In preparation for our mission, we found the straight-line distance from Earth to our selected planet/moon (in kilometers). Our spacecraft will make 3 round trips to that destination, so we multiplied our found distance by 6, since 3 round trips means that we traveled that distance a total of 6 times, to get our total distance (in kilometers). | | Straight-Line
Distance from
Earth (km) | Number of
Round Trips (× 2) | Total Travel
Distance (km)
(Show Your Work) | |------------------------------|--|---------------------------------|---| | Example | 1.34×10^{6} | 3 · 2 | $1.34 \times 10^{6} \cdot 6$ $= 8.04 \times 10^{6}$ | | Your Selected
Planet/Moon | | 3 · 2 | | ## **Applying Initial Finding** We used the information from our initial findings from our Mission Report to perform the following calculations. All our final results are written in scientific notation and rounded to 2 decimal places. #### **Diameter Ratios** To compare the diameters, we found the ratio of our selected planet/moon to that of the Earth. In other words, we divided the diameter of our selected planet/moon by the diameter of the Earth (1.27×10^4 km). | | Planet/Moon's
Diameter (km) | Earth's
Diameter (km) | Ratio
(Show Your Work) | |------------------------------|--------------------------------|--------------------------|--| | Example | 2.15×10^{5} | 1.27×10^{4} | $\frac{2.15 \times 10^5}{1.27 \times 10^4} = 1.69 \times 10^1$ | | Your Selected
Planet/Moon | | 1.27×10^{4} | | ### Weight Comparison Our astronaut who will pilot our spacecraft has a mass of 8.1×10^1 kilograms. We know our pilot will have a weight dependent on our planet/moon's surface gravity. So, we calculated this weight in Newtons (N) by multiplying our pilot's mass by the surface gravity (m/s²). | | Pilot's Mass (kg) | Surface Gravity (m/s²) | Weight (N)
(Show Your Work) | |------------------------------|---------------------|------------------------|---| | Example | 8.1×10^{1} | 2.3×10^{0} | $(8.1 \times 10^{1})(2.3 \times 10^{0})$ $= 1.86 \times 10^{2}$ | | Your Selected
Planet/Moon | 8.1×10^{1} | | |