EXPERIMENTAL BALL DROP

Materials

meter stick

calculator

golf ball

Experiment

- 1) Determine who is Partner A and who is Partner B.
- 2) Partner A: Hold the meter stick against the wall, with the base on the floor.
- 3) Partner B: Hold the golf ball such that the bottom of the ball is at a height of 40 cm.
- 4) Partner B: Drop the ball.
- 5) Estimate the height the ball bounces after it hits the floor. If the height cannot be agreed upon, repeat steps 3 & 4.
- 6) Repeat steps 2–5, taking turns dropping the golf ball from the following heights: 50 cm, 60 cm, 70 cm, 80 cm, 90 cm, and 100 cm.

Results

Height (cm)	40	50	60	70	80	90	100
Height of Bounce (cm)							

Data Analysis

- 1) Use your calculator (using linear regression) to find the equation for the line of best fit.
- 2) Identify and interpret the correlation coefficient (*r*-value).



EXPERIMENTAL CANDY DROP

Materials

• 20 candies

calculator

Experiment

- 1) Define the "heads" (top) and "tails" (bottom) of the candy.
- 2) Determine who is Partner A and who is Partner B.
- 3) Partner A: Collect candies in your hands and gently drop them onto the table.
- **4) Partner B:** Count and record the number of candies that land heads-up. Set those (heads-up) candies aside.
- 5) Partner B: Collect candies tails-up in your hands and gently drop them onto the table.
- 6) Repeat steps 4 & 5, taking turns dropping the candies until either:
 - (a) all candies have landed heads-up or
 - (b) a total of 10 drops have been completed.

Results

Drop #	1	2	3	4	5	6	7	8	9	10
Number of Candies Heads-Up										

Data Analysis

- 1) Use your calculator (using linear regression) to find the equation for the line of best fit.
- 2) Identify and interpret the correlation coefficient (*r*-value).

