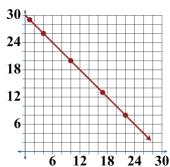
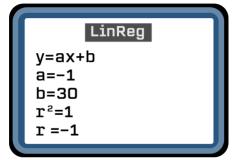
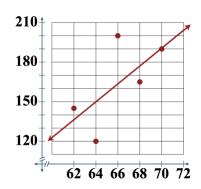

# **CORRELATION COEFFICIENTS AND TRENDS (MODEL NOTES)**

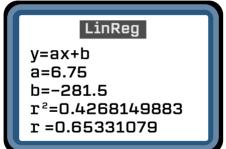
#### **Directions**


- 1) Sketch one single straight line that you think best fits each set of data.
- 2) Highlight the values for a, b, and r (not  $r^2$ ).


| Tickets | Cost |
|---------|------|
| 1       | \$15 |
| 2       | \$30 |
| 3       | \$45 |
| 4       | \$60 |
| 5       | \$75 |







| Candy | Candy |
|-------|-------|
| Eaten | Left  |
| 1     | 29    |
| 4     | 26    |
| 10    | 20    |
| 17    | 13    |
| 22    | 8     |





| Height<br>(in.) | Weight<br>(lbs.) |
|-----------------|------------------|
| 62              | 145              |
| 64              | 120              |
| Ů.              | -                |
| 66              | 200              |
| 68              | 165              |
| 70              | 190              |





#### **Observations**

How do you see *a* and *b* represented on the line you sketched?

*a* is the slope of the line, and *b* is the *y*-intercept.

Compare the r-values of each data set. What do you think r represents?

r represents how well the data fits the line.

## **Linear Regression (Formalize Your Findings)**

Your calculator uses *linear regression* to find a line of best fit, which is also known as a *linear* regression model.

- *a* represents the <u>slope</u> of the line.
- **b** represents the **y-intercept** of the line.
- r is the correlation coefficient. This r-value shows how well the linear regression model fits the data .
- The closer the r-value is to  $_{-1}$  or  $_{1}$ , the better the line fits the data.

### **Linear or Exponential**

- If a scatter plot can be represented with a straight line, then we say that the trend is linear .
- If a scatter plot cannot be represented with a straight line, then we say that the trend is nonlinear .
- When a data set is *linear*, the *y*-values change by *adding the same number* .
- When a data set is exponential, the y-values change by multiplying by the same number .

| Week | Account |
|------|---------|
|      | Balance |
| 1    | \$4.00  |
| 2    | \$8.00  |
| 3    | \$12.00 |
| 4    | \$16.00 |
| 5    | \$20.00 |

## **Example**

You are saving money to buy a video game. The table shows your account balance at the end of each week. Is the data linear or not linear? How can you tell from the table?

The data is linear because \$4 is added to the account balance every week.

Find the linear regression model for your account balance and write it in the form y = mx + b.

$$y = 4x + 0$$
 or  $y = 4x$ 

Give the correlation coefficient and explain its meaning.

r = 1. This means that the linear regression model perfectly fits the given data.

Predict the amount of money in your account after 10 weeks.

$$v = 4(10) + 0 = 40 + 0 = 40$$

v = 4(10) + 0 = 40 + 0 = 40 After 10 weeks, I should have \$40.

