RIGHT TRIANGLE RELATIONSHIPS

Follow instructions carefully, making observations and recording them in your notebook.

1) Observe the triangles below. Name them and list their obvious characteristics.
2) Use a tool (or calculate if possible) to find the missing measures of all three triangles. Use a chart like the one below to record your data.

$\triangle E A D$	$\Delta ? ? ?$	$\Delta ? ? ?$
$m \angle E A D=$	$m \angle ? ? ?=$	$m \angle ? ? ?=$
$m \angle A D E=$	$m \angle ? ? ?=$	$m \angle ? ? ?=$
$m \angle D E A=$	$m \angle ? ? ?=$	$m \angle ? ? ?=$
$m \overline{E A}=$	$m \overline{? ?}=$	$m \overline{? ?}=$
$m \overline{A D}=$	$m \overline{? ?}=$	$m \overline{? ?}=$
$m \overline{D E}=$	$m \overline{? ?}=$	$m \overline{? ?}=$

3) For each triangle, form ratios using its segment lengths, then write them in decimal form.
4) What have you observed about these ratios?
5) Create a hypothesis about the relationships among the lengths of the sides of the right triangles based on the information that your group gathered and discussed.
6) Draw a set of 30-60-90 triangles similar to the one below and repeat this process. Does your hypothesis stand?

