USING TRIG RATIOS (SAMPLE RESPONSES)

1) In $\triangle D E F$ shown below, $\overline{D E}=\sqrt{8} \mathrm{~cm}$ and $\overline{E F}=\sqrt{17} \mathrm{~cm}$. What is $\cos (F)$?

$$
\overline{D F}=\sqrt{(\sqrt{8})^{2}+(\sqrt{17})^{2}}=5
$$

3) For an angle with measure θ in a right triangle, $\sin \theta=\frac{\sqrt{15}}{8}$ and $\cos \theta=\frac{7}{8}$. What is the value of $\tan \theta$?
$*$ sketch a triangle $*$
opposite $=\sqrt{15}$
adjacent $=7$

$$
\text { hypotenuse }=8
$$

$\tan \theta=\frac{\sqrt{15}}{7}$

$$
\cos (F)=\frac{\sqrt{17}}{5}
$$

2) The lengths of 3 sides of a right triangle $\triangle A B C$, which is shown below, are all given in feet.

Which ratio has the value of $\frac{12}{13}$?
(a) $\sin (A)$
(b) $\sin (C)$
(c) $\cos (B)$
(d) $\cos (C)$
(e) $\tan (A)$
(f) $\tan (\mathrm{C})$
4) In $\triangle L M N$ shown below, the length of $\overline{L M}$ is 8 inches and $\sin (N)=\frac{2}{3}$. What is the length, in inches, of $\overline{L N}$?

$$
\begin{aligned}
& \sin (N)=\frac{2}{3}=\frac{8}{\overline{L N}} \\
& \Rightarrow \overline{L N}=12
\end{aligned}
$$

