USING TRIG RATIOS (SAMPLE RESPONSES)

1) In ΔDEF shown below, $\overline{DE} = \sqrt{8} \ cm$ and $\overline{EF} = \sqrt{17} \ cm$. What is $\cos(F)$?

$$\overline{DF} = \sqrt{\left(\sqrt{8}\right)^2 + \left(\sqrt{17}\right)^2} = 5$$

$$\cos(F) = \frac{\sqrt{17}}{5}$$

2) The lengths of 3 sides of a right triangle $\triangle ABC$, which is shown below, are all given in feet.

Which ratio has the value of $\frac{12}{13}$?

- (a) sin(A)
- (b) sin(C)
- (c) cos(B)
- (d) cos(C)
- **(e)** *tan*(*A*)
- **(f)** *tan*(C)

3) For an angle with measure θ in a right triangle, $\sin \theta = \frac{\sqrt{15}}{8}$ and $\cos \theta = \frac{7}{8}$. What is the value of $\tan \theta$?

sketch a triangle

 $opposite = \sqrt{15}$

adjacent = 7

hypotenuse = 8

$$\tan \theta = \frac{\sqrt{15}}{7}$$

4) In $\triangle LMN$ shown below, the length of \overline{LM} is 8 inches and $\sin(N) = \frac{2}{3}$. What is the length, in inches, of \overline{LN} ?

$$\sin\left(N\right) = \frac{2}{3} = \frac{8}{\overline{LN}}$$

$$\Rightarrow \overline{LN} = 12$$