POSITION, VELOCITY, AND ACCELERATION: GUIDED NOTES

$s(t)=$ position function \qquad $s(t)=$ position
$v(t)=\frac{\Delta s}{\Delta t}$ \qquad
\qquad $s^{\prime}(t)=v(t)=$ velocity
$a(t)=\frac{\Delta v}{\Delta t}$
. as $\Delta t \rightarrow 0$ \qquad $s^{\prime \prime}(t)=v^{\prime}(t)=a(t)=$ acceleration

Speed, on its own, measures how fast an object is traveling. Velocity represents both the speed and direction traveled.

Example Problems

The function $s(t)=5+\cos \left(\frac{\pi t}{2}\right)$ on the closed interval $[0,3]$ models a particle's vertical motion along a line.

1) At what value(s) of t is $v(t)=0$? Describe the particle's motion.
2) At what value(s) of t is $a(t)=0$?
3) On what interval(s) is $v(t)>0$? $v(t)<0$?
4) On what interval(s) is $a(t)>0$? $a(t)<0$?
5) Based on these results, when is the particle speeding up on the time interval? When is the particle slowing down? Justify your answers.
