Always, Sometimes, or Never True?

Directions: Read the statement, then circle the appropriate classification of the statement. Include an example that supports your classification, and a non-example if it applies.

Statement	Classification	Example/Counterexample
Cubic means the highest	Always True	Reason: The degree of
power of x is 3.	Sometimes True	the polynomial is always
	Never True	determined by the
		highest power of x.
A quadratic will have	Always True	Depending on the
two x-intercepts because	<mark>Sometimes True</mark>	equation, it may never
it makes a U shape.	Never True	intersect the x-axis. There
		will always be two zeroes
		for the equation, but they
		may not always be real or
		unique.
		Example: $x^2 - 4x - 12$
		Counter Examples:
		One x-intercept x ²
		No x-intercepts 3x ² +1
An odd degree will	<mark>Always True</mark>	Since the end behavior is
always have an x-	Sometimes True	in different directions,
intercept.	Never True	the x-axis will be
		intersected eventually.
The function $y=2x^2-3x+6$	Always True	Neither of the zeros are
has two zeros.	Sometimes True	real, but there are two
	Never True	zeros.
Polynomials make	Always True	Linear and constant
curved lines when	<mark>Sometimes True</mark>	equations are types of
graphed.	Never True	polynomials; polynomials
		and their graphs are lines.
		Example of a curved
		Example of a curved graph: x ⁴ -2x ³ +x-1
		Example of a curved graph: x ⁴ -2x ³ +x-1
		graph: x ⁴ -2x ³ +x-1
		-

		Example of a constant function: y = a, where a is any real number.
The leading coefficient	Always True	Yes, the leading
determines how steep	<mark>Sometimes True</mark>	coefficient does influence
the curve is.	Never True	steepness, but so do the
		other coefficients. The
		exception would be the
		coefficient associated
		with x ⁰ power, which
		does not dilate the graph.
A polynomial must have	Always True	Another way to describe
at least three terms.	<mark>Sometimes True</mark>	a polynomial is by the
	Never True	number of terms of which
		it is composed. 1 term =
		monomial, 2 terms =
		binomial, 3 terms =
		trinomial.
The number of	Always True	The degree of the
intercepts depends on	<mark>Sometimes True</mark>	polynomial will tell you
the highest degree.	Never True	the maximum number of
		zeros a polynomial can
		potentially have. Since
		some zeros are not real,
		they may not intercept
		the x-axis. Similarly,
		zeros with an even
		multiplicity will touch the
		x-axis, but will not pass
		through it. For example,
		a quadratic can have a
		maximum number of 2
		intercepts. This would be
		the case for something
		like $y=x^2 - 4$. However, if
		the multiplicity of the

		zero is even in the case of $y=x^2-4x+4$, then there will be only one zero. Finally, in $y=x^2+5$, there are no real solutions to the polynomial and it therefore has no real solutions, meaning its roots fall in the complex set of numbers.
The function y=x ⁵ +3x ³ +7 has one real solution.	<mark>Always True</mark> Sometimes True Never True	The solution is x= -1.35
Polynomials with an even degree have the same end behavior.	<mark>Always True</mark> Sometimes True Never True	
4 th degree polynomial functions look similar to quadratic functions.	Always True <mark>Sometimes True</mark> Never True	Yes, y=x ⁴ looks like a fat parabola, but not all of them have that appearance.
Cubic graphs will continuously increase, therefore don't have a minimum or maximum.	Always True <mark>Sometimes True</mark> Never True	If the cubic function is a monomial, in the case of $y=x^3$, then there will be a point of constant slope at x=0, which means the function is neither increasing nor decreasing at that point.
		An example of a cubic polynomial with both increases and decreases would be $y=x^3-x+1$. There are two intervals where the function is increasing and one where it is decreasing.

		An example of a cubic polynomial that always increases would be something like y=x^3+x. This will only occur when the cubic function's derivative (a quadratic) has no real solutions.
Polynomials with an odd	<mark>Always True</mark>	
degree will have	Sometimes True	
opposite end behavior.	Never True	
The number of turning	Always True	The number of turns can
points depends on the	<mark>Sometimes True</mark>	be anywhere from 0 to n-
highest degree of the	Never True	1, for an nth degree
function.		function.
The constant effects the	Always True	The constant determines
steepness of the curve.	Sometimes True	where the graph is in
	<mark>Never True</mark>	relation to the x-axis.

