Sustained interest in the content

Ability to utilize tools for learning, not just for the sake of novelty

Sustained interest in the content

Everyone can be confident in
Whole-class participation some part of a difficult task when it is multimodal

Whole-class participation

Persistence through a difficult task

Ability to utilize tools for learning, not just for the sake of novelty

Accessibility for multiple levels of pre-existing student knowledge and skills

Everyone can be confident in some part of a difficult task when it is multimodal

Persistence through a difficult task

Accessibility for multiple levels of pre-existing student knowledge and skills

Collect multiple data points from a simulation

Decide what variable is best for the situation

Use authentic data (overlays) to make sense of concepts

Access information and experiences that are generally unavailable in everyday life

Construct a specific claim, and provide evidence and reasoning to support the claim

Explore the simulation freely before focusing on specific features

Access information and experiences that are generally unavailable in everyday life

Collect multiple data points from a simulation

Decide what variable is best for the situation

Use authentic data (overlays) to make sense of concepts

Construct a specific claim, and provide evidence and reasoning to support the claim

Explore the simulation freely before focusing on specific features

The only way to become proficient in content is to interact with it. Learning by watching is useful but doesn't provide deeper confidence and ability to do a task.

Simulations, as a tool, are used over a short timeframe. This scale is effective for tasks focused on learning content, but it is not long enough for skill development, which occurs gradually.

The only way to become proficient in content is to interact with it. Learning by watching is useful but doesn't provide deeper confidence and ability to do a task.

While knowledge itself is important, content must be paired with relevant skill development when teaching how to think. The ability to use knowledge or apply it to solving problems relies on understanding how to use appropriate tools.

Brains use memories and knowledge like paths; the more significant the "landmarks" and the frequency of the "visits," the easier it is to remember the way along the path.

While knowledge itself is important, content must be paired with relevant skill development when teaching how to think. The ability to use knowledge or apply it to solving problems relies on understanding how to use appropriate tools.

Simulations, as a tool, are used over a short timeframe. This scale is effective for tasks focused on learning content, but it is not long enough for skill development, which occurs gradually.

When students are given autonomous learning opportunities more often, they show more autonomy and become more empowered learners.

Simulations change how learners distribute their mental energy (cognitive load) to increase how much goes toward working through learningspecific complexity.

Brains use memories and knowledge like paths; the more significant the "landmarks" and the frequency of the "visits," the easier it is to remember the way along the path.

Simulations change how learners distribute their mental energy (cognitive load) to increase how much goes toward working through learningspecific complexity.

