Sustained interest in the content	Ability to utilize tools for learning, not just for the sake of novelty
Whole-class participation	Everyone can be confident in some part of a difficult task when it is multimodal
Persistence through a difficult task	
Accessibility for multiple levels of pre-existing student knowledge and skills	

Collect multiple data points from a simulation	Use authentic data (overlays) to make sense of concepts
Decide what variable is best for the situation	Access information and experiences that are generally unavailable in everyday life
Construct a specific claim, and provide evidence and reasoning to support the claim	
Explore the simulation freely before focusing on specific features	

The only way to become proficient in content is to interact with it. Learning by watching is useful but doesn't provide deeper confidence and ability to do a task. Simulations, as a tool, are used over a short timeframe. This scale is effective for tasks focused on learning content, but it is not long enough for skill development, which occurs gradually.

While knowledge itself is important, content must be paired with relevant skill development when teaching how to think. The ability to use knowledge or apply it to solving problems relies on understanding how to use appropriate tools. Brains use memories and knowledge like paths; the more significant the "landmarks" and the frequency of the "visits," the easier it is to remember the way along the path.

When students are given autonomous learning opportunities more often, they show more autonomy and become more empowered learners.

Simulations change how learners distribute their mental energy (cognitive load) to increase how much goes toward working through learningspecific complexity.